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Abstract

Recently, semantically constrained adversarial examples (SemanticAE), which are
directly generated from natural language instructions, have become a promising
avenue for future research due to their flexible attacking forms, but have not been
thoroughly explored yet. To generate SemanticAEs, current methods fall short of
satisfactory attacking ability as the key underlying factors of semantic uncertainty
in human instructions, such as referring diversity, descriptive incompleteness, and
boundary ambiguity, have not been fully investigated. To tackle the issues, this
paper develops a multi-dimensional instruction uncertainty reduction (InsUR)
framework to generate more satisfactory SemanticAE, i.e., transferable, adaptive,
and effective. Specifically, in the dimension of the sampling method, we propose
the residual-driven attacking direction stabilization to alleviate the unstable adver-
sarial optimization caused by the diversity of language references. By coarsely
predicting the language-guided sampling process, the optimization process will
be stabilized by the designed ResAdv-DDIM sampler, therefore releasing the
transferable and robust adversarial capability of multi-step diffusion models. In
task modeling, we propose the context-encoded attacking scenario constraint to
supplement the missing knowledge from incomplete human instructions. Guid-
ance masking and renderer integration are proposed to regulate the constraints
of 2D/3D SemanticAE, activating stronger scenario-adapted attacks. Moreover,
in the dimension of generator evaluation, we propose the semantic-abstracted at-
tacking evaluation enhancement by clarifying the evaluation boundary based on
the label taxonomy, facilitating the development of more effective SemanticAE
generators. Extensive experiments demonstrate the superiority of the transfer at-
tack performance of InSUR. Besides, it is worth highlighting that we realize the
reference-free generation of semantically constrained 3D adversarial examples by
utilizing language-guided 3D generation models for the first time.

1 Introduction
Adversarial example (AE), showing that small perturbations can impact the performance of deep
learning models, is broadly focused due to its potential to promote model robustness and secure
applications in practice. A series of studies has uncovered several forms of AEs, including physical-
world AEs [1, 2, 3, 4], transfer AEs [5, 3] and naturalistic AEs [6, 7], as well as the applications in
evaluating real-world recognition [8, 9], autonomous driving [10, 11, 12] or LLM systems [13, 14].

While most adversarial example research focuses on finding AEs around existing data, generating
AEs from natural language instructions without referenced data has not yet been thoroughly explored,
i.e., to find Semantic-Constrained Adversarial Examples (SemanticAE). Specifically, given a certain
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natural language description, we aim to generate the data that corresponds to its real semantic meaning
but is hardly to be correctly recognized by deep learning models trained in related tasks. Recent works
have employed techniques related to naturalistic AEs to accomplish a similar objective [15, 16, 17], ,
but the de facto potential of SemanticAE has still not been fully released in performing transferable,
adaptive, and effective attacks, limiting the applicability. In light of the recent advancements in
language-driven multimodal intelligence and the increasing demand for alignment [18, 19, 20], it is
necessary to take a step further in SemanticAE generation and facilitate more versatile AE generation.

Transfer 2D & Robust 3D
Semantic AEs

Target model

“Image of Airship”

Surrogate Model

InSUR Generator

“Image of Shark”

Figure 1: SemanticAEs are gen-
erated directly by instructions.

To push the boundary of the current technology, we focus on the
key underlying factor limiting the adversarial capability of Seman-
ticAEs: the inherent uncertainty within human instructions that
defines semantic constraints. We categorize three major forms
of uncertainty in instructions: ❶ Referring diversity introduces a
barrier in SemanticAE optimization via the multi-step generative
models, since it leads to the inconsistent language-guidance that
the adversarial optimization should collaborate with. ❷ Descrip-
tive incompleteness, which conceptualizes the gap between the
precise model of the attack scenario and the instructions given by
potential users, restricts the application scenarios. ❸ Boundary
ambiguity of the semantic constraint is hard to characterize in task
definitions, affecting the evaluation of SemanticAE generators.

We propose a multidimensional instruction uncertainty reduction (InSUR) framework to tackle
the issues and generate more transferable, adaptive, and effective SemanticAE. Specifically, for
referring diversity, we propose residual-driven attacking direction stabilization via the novel ResAdv-
DDIM sampler that stabilizes optimization through coarsely predicting the language-guided sampling
process, releasing the capability of multistep diffusion models on adversarial transferability and
robustness. For descriptive incompleteness, we propose the context-encoded attacking scenario
constraint for both 2D and 3D generation problems by scenario knowledge integration, tackling
the scenario adaptation problem by addressing the descriptions’ incompleteness problem, achieving
the first 3D SemanticAE generation. For boundary ambiguity, we propose the semantic-abstracted
attacking evaluation enhancement based on label taxonomy. Our contribution can be summarized as:

• We conceptualize the SemanticAE generation problem and propose a multi-dimensional instruc-
tion uncertainty reduction framework, InSUR, to address the challenges.

• In the dimension of the sampling method, we propose the residual-driven attacking direction
stabilization to achieve better adversarial optimization. In task modeling, we propose the context-
encoded attacking scenario constraint to realize scenario-adapted attacks. In generator evaluation,
we propose the semantic-abstracted attacking evaluation enhancement to facilitate the develop-
ment of SemanticAE generators.

• Extensive experiments demonstrate the superiority in the transfer attack performance of gen-
erated 2D SemanticAEs, and for the first time, we realize the reference-free generation of 3D
SemanticAE by utilizing language-guided 3D generation models.

2 Backgrounds

Adversarial Example Generation Adversarial attack generating algorithms can be categorized
as iterative optimization in the data space, e.g. FGSM [21], PGD [22], AutoAttack [23], iterative
optimization in the latent space of generative models, e.g. NAP [24], AdvFlow [25] and DiffPGD [7],
training a neural network for generation [26, 2, 27], and applying zero-order optimizations [28, 9].
Adversarial examples may not be robust in the physical world. For physical attacks, expectation-over-
transformation (EoT) [29] and 3D simulation [30, 31] are proposed to bridge the digital-physical gap.
Research has also focused on attacking unknown models, i.e, transfer attacks [5, 32]. An extended
technical background and related works are provided in Appendix A.

Semantic-constrained Adversarial Example [33] first proposes the Unrestricted Adversarial
Example(UAE), of which the restriction is defined by the human’s cognition instead of lp-norm
on existing data, and proposes a generative learning method for its generation. A line of studies
further develops optimization techniques in latent spaces [34, 24, 35], and terms it as Natural
Adversarial Example (NAE), while another line of study focuses on constructing the perceptual
constraints for UAEs. A difference between them is that NAE studies also focus on generating
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Figure 2: Overview of multi-dimensional instruction uncertainty reduction (InSUR) framework.

diverse-distributed adversarial examples without referencing a static image. We formulate the
adversarial example generating task constrained by natural language’s semantics as the semantically-
constrained adversarial example generation problem. Recent works ([7, 35, 36, 16, 17]) focus on
integrating the pre-trained diffusion model and iterative optimization to constrain the naturalness and
improve transferability. Furthermore, generating 3D adversarial examples that are more aligned with
the physical world and satisfy the semantic constraints is still an open problem.

3 Methodology
3.1 Problem Formulation and Analysis
Semantic-Constrained Adversarial Example (SemanticAE) Generation Problem We define
SemanticAE generation problem as generating an adversarial example xadv that fools the target
model and satisfies the semantics constraint defined by the user’s instruction Text. Formally, we
formulate the SemanticAE generation problem as follows:

find xadv ∈ S(Text) s.t.M(xadv) ∈ AText, (1)

where S(Text) is the set of data with semantic meaning corresponding to Text,M represents the
target model, and AText defines the types of target model’s output that are conceptually different
from Text, representing a successful attack. In the strict black-box setting, which is the focus of this
paper, both S andM are unknown to the generation algorithm.

The goals of SemanticAE generation are to build a red-team model G that automatically finds the
alignment problem between the intelligent modelM and the implicit semantics S(Text) reflecting
the social consensus or the physical world. This goal leads to the following constraints: firstly,
to achieve automatic alignment with limited supervision, the instruction Text is not required to
characterize semantic constraints precisely. Secondly, from the perspective of data value, the generated
SemanticAE xadv should be able to perform transfer attacks.

Challenges in SemanticAE Generation As shown in the middle card of Figure 2, generative or
diffusion models can constrain the pattern of generated AEs and facilitate transfer attacks with better
in-manifold constraint [37]. We take a step further in SemanticAE, focusing on the inherent challenge
related to instruction uncertainty: ❶ Reference diversity challenges adversarial optimization. The
language guidance that is learned from the mapping between Text and S(Text) is non-linear since
S(Text) is diverse. This makes collaborating with adversarial optimization and the diffusion model
for better transfer attacks and robust attacks a non-trivial problem. ❷ Descriptive incompleteness
requires scenario-knowledge integration for scenario-adapted generation. The challenges are iden-
tifying the missing contexts in pretrained models and establishing practical knowledge embedding
methodologies, thereby further eliminating the reference diversity from the external perspective. ❸
Boundary ambiguity makes defining S and A for evaluating the generator also challenging, which
lies in the fact that inappropriate evaluation leads to inaccurate results.

Multi-dimensional Instruction Uncertainty Reduction (InSUR) Framework As shown in
Figure 2, for the reference diversity problem, we propose the residual-driven attacking direction
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stabilization with the designed ResAdv-DDIM sampler. For the contextual incompleteness, we
propose the context-encoded attacking scenario constraint methods for scenario-knowledge inte-
gration in representative 2D and 3D SemanticAE generation tasks. Moreover, since the unclear
semantic boundary makes evaluating the generator difficult, semantic-abstracted attacking evaluation
enhancement is proposed to facilitate further developments of SemanticAE generation.

3.2 Residual-driven Attacking Direction Stabilization with ResAdv-DDIM
Semantic-constrained Optimization Problem Referring to the generative-model-based adversarial
examples, we solve SemanticAE generation by maximizing the loss LATK under the constraint of
the posterior sampling process defined by the natural language guidance Text. However, if the
posterior sampling process is more complex, e.g., multi-step diffusion de-noising, tackling this
maximization problem is challenging. Recent work utilizes a deterministic sampling process, e.g.,
DDIM [38], as a constraint defined by Text [7, 15]. For simplicity, we denote the sampling step as
fθ,∆T (xt) ∼ qθ(xt−∆T |xt, x0,Text), and such optimization can be formulated as:

maxLATK(M(fθ,∆T ◦ fθ,∆T ◦ · · · ◦ fθ,∆T︸ ︷︷ ︸
T/∆T times

(xT ))), (2)

where ◦ denotes function composition. However, this may trigger the robust problem of f , since it is
hard to determine whether x0 is an adversarial example of f orM. This results in the instruction
misalignment of SD-NAE shown in section 4.4. Also, this optimization is computationally expensive.
Another solution is to tackle the challenges by approximating the gradient [7] or directly altering the
sampling process [16], which can be re-formulated as:

xt−∆T = fθ,∆T (argmax
x′
t

LATK(M(x′
t))), ∀t ∈ [∆T, ts), (3)

where ts is a selected intermediate step, and the maxxt
optimization could be a single iteration.

An advantage is that, since the maximization algorithm does not retrieve the information of f , or
f has been protected from adversarial attacks, it alleviates the robustness problem of f . However,
the optimization used∇x0

LATK to approximate∇x′
t
LATK, and the inconsistency introduces noise

to the optimization. As shown in Figure 3, the optimization direction may vary, or be non-linear,
with respect to different xt. This misalignment makes the adversarial pattern optimized in the
initial denoising stage ineffective in the latter stage, thereby limiting the multi-step regularization
opportunity of diffusion models for better transfer attacks.

Overall, this technical challenge originates from the conflict between (1) the accurate estimation of
∇xt
LATK, causing the robust problems of the language guidance defined by f and the computational

problems, and (2) the approximated estimation of ∇xt
LATK, causing the non-optimality of attack

optimization. We solve the problem by improving the approximation with the novel ResAdv-DDIM
posterior sampler, enabling the discovery of more robust adversarial patterns with better regularization.
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Optimization
Directions

Figure 3:
Inconsistent adv.
direction problem.
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Figure 4: Residual-driven attacking direction stabilization. ResAdv-DDIM
is designed for the efficient and thorough exploration of new adversarial
patterns constrained by multi-step sampling processes.

Residual-Guided Adversarial DDIM Sampler Inspired by Learning to Optimize [39], we handle
the challenge by predicting a coarse sketch of the future-step denoising result x0 for estimating
the attack optimization direction with LATK. Our key insight is that since multi-modal models
acquire general capabilities through training in the task of predicting diverse human responses and
complementing missing information across diverse data, we should fully leverage the model’s intrinsic
multi-granularity predictive capabilities to achieve stable generation under semantic uncertainty.

Specifically, we leverage DDIM’s multi-step posterior sampling capabilities to achieve a coarse
prediction of x0 from current xt, i.e., gθ(xt), which allows for a more accurate estimate of∇xt

LATK

compared to directly using ∇x0
LATK. We formulate the generation process as:
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gθ(xt) = fθ,∆T1 ◦ fθ,∆T2 ◦ · · · ◦ fθ,∆Tk︸ ︷︷ ︸
k times, k≪T/∆T

(xt), where
k∑

i=1

∆Ti = t

xt−∆T = fθ,∆T (argmax
xt

LATK(M(gθ(xt)))), ∀t ∈ [∆T, ts).

(4)

The notation is the same as Eq 2. gθ(xt) is the coarse estimation of x0, and k is a small number of
iterations that could be selected from {1, 2, 3, 4}. Since the sampling process takes a residual shortcut
to x0, we name it as Residual-Guided Adversarial DDIM Sampler (ResAdv-DDIM).

To further establish the concrete adversarial attack algorithm, we further propose the following
method. (1) Constraining the Semantics. To ensure the generated sample satisfies xadv ∈ S(Text),
we constrain the discrepancy of the sample trajectory with the l2-norm between DDIM-generated
samples and the adversarially optimized samples after determining xts :

||DenoiseDDIM(xts−∆T )−DenoiseAdv(xts−∆T )||2 < ϵ. (5)

Such constrained optimization problem could be performed by simultaneously sampling with
DenoiseDDIM and DenoiseAdv, and clipping x′

t in each step. (2) Adaptive Attack Optimization. To
solve the maximization in Eq. 4, we introduce an early-stop mechanism that terminates optimization:

(1) after the first iteration, and the estimated probability of unsuccessful attack < ξ1, or,
(2) at the first iteration, when this probability satisfies a stricter threshold ξ2 < ξ1.

The probabilities are estimated fromM(gθ(xt)). These conditions reduce the expected number and
lower bound of optimization steps, while maintaining attack performance alongside the denoising step,
which degrades the adversarial capability. Lower threshold could result in better attack performance
and slower optimization, and we set ξ1 = 0.1, ξ2 = 0.01 as a feasible setting across all experiments.
In addition, we integrate momentum optimization, introduced in [17, 5], to improve the attack
transferability. Detailed implementation and analysis are shown in Appendix B.1.

3.3 Context-encoded Attacking Scenario Constraint for 2D and 3D Generation
In the application scenarios, the instruction Text might be ambiguous or incomplete, which requires
integrating learned guidance with external knowledge. For effective task adaptation, we provide
knowledge embedding strategies on the key data structures that collaborate with the ResAdv-DDIM
sampler, achieving better 2D SemanticAE generation and realizing 3D SemanticAE generation.

Spatial Constraint Complement for 2D SemanticAE Generation We focus on the problem of
the incompleteness of the spatial constraint given by the instruction Text representing the object label.
Specifically, an effective SemanticAE generator shall leverage the optimization space of the image
backgrounds and generate patterns that amplify the attack’s effectiveness. However, the diffusion
model’s conditional background generation is overly uniform because the attack functionalities
were not considered during the original training. To solve the problem, we encode the context of
the attack application through the fine-grained control of the denoising guidance. We leverage the
application of guidance-masking from edit area control of single guidance [40] to the re-distribution
of multiple guidance, and embed the masking into the key guidance function fθ applied in both
posterior sampling and adversarial optimization process in ResAdv-DDIM (as shown in Figure 2).
Together with the deterministic DDIM, fθ is formulated as:

fθ,∆T (xt) =
√

ᾱt−∆T /ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
+

√
1− ᾱt−∆T · ϵθ(xt, t),

ϵθ(xt, t) = (1−M) · ϵθ,Unconditional(xt, t) +M · ϵθ,Conditional(xt, t,Text),
(6)

where α defines the noise ratio in the diffusion model, ϵθ is the noise estimating network, and M is
the guidance masking that regularizes the spatial distribution of semantic guidance Text. Detailed
definition of M is in Appendix B.1, and the integration is illustrated in Figure 2.

Differentiable Rendering Pipeline Integration for 3D SemanticAE Generation 3D Data is
valuable for world modeling [41, 42]. We focus on the problem of generating 3D SemanticAE x

(3D)
adv

for target modelsM operated under the 2D inputs. To fill the gap between the 3D scenarios 2D
target models, additional physical rendering knowledge shall be efficiently encoded. Leveraging the
proposed ResAdv-DDIM sampler and the advancements in Gaussian-splatting [42], we fill the gap
between the 3D generation and 2D target models. As shown in Figure 5, we optimize latents with the
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gradient back-propagated through the 3D data structure and integrate the scenario knowledge during
the differentiable rendering process. The optimization pipeline could be implemented concisely
with the Trellis [43] framework, which is a recently published diffusion-based 3D access generation
framework. For simplicity, we reformulate the Trellis sampling and rendering process as:

pos = Coords(Dslat(z
slat
0 )), ModelGS = DGS(z0,pos), x = RendererGS(ModelGS,Camera),

DGS : {(zi, posi)}Li=1 → {{(xk
i , c

k
i , s

k
i , α

k
i , r

k
i )}Kk=1}Li=1,

(7)
where z0 and zslat

0 are latents sampled by the diffusion model, and are represented by sparse and
dense tensors, respectively. Dslat is the coarse structure decoder, Coords transforms the voxel to
point positions pos, DGS is the refined structure decoder that decodes each vertex into multiple
Gaussian points and RendererGS renders the Gaussian model to 2D images x with the camera
parameter. For SemanticAE generation, the refined feature generation process {zT , zT−∆T , ..., z0}
is replaced with ResAdv-DDIM sampling in Eq. 4 with the rendering model embedded in gθ:

gθ(zt,pos,Camera) := RendererGS(DGS(fθ,∆T1
◦ · · · ◦ fθ,∆Tk

(zt,pos),pos),Camera)

zt−∆T := fθ,∆T (argmax
zt

ECamera∼PCam
[LATK(M(gθ(zt,Camera,pos)))]) (8)

We use the EoT method with gradient accumulation to optimize zt for unknown camera positioning,
i.e., samples Camera from PCam in each iteration. The scenario knowledge is encoded in PCam

and the rendering background. Due to the stabilized guidance in ResAdv-DDIM, the gradient of the
previous steps could be utilized as current-step gradient estimation, and therefore, fewer EoT steps
are required. Since texture and localized positioning perturbation are enough for adversarial attacks,
zslat0 is not included in the parameter space and serves as a semantic anchor. With the collaborative
constraint of 3D diffusion and renderer model, semantically-constrained and multi-view adapted
SemanticAEs are efficiently generated. Detailed implementation is shown in Appendix B.2.

3.4 Semantic-abstracted Attacking Evaluation Enhancement with Label Taxonomy

The evaluation of SemanticAE generator requires the benchmark to judge whether x ∈ S(Text) and
define AText, which determines the adversarial attack and semantic alignment performance of the
generator, and is still a blank in practice. To address the issue, we provide a task construction method
for automatic evaluation based on the application goal of the SemanticAE generation task. Note that
our method evaluates the SemanticAE generator instead of the adversarial example.

Figure 6: Construction of abstract label evasion evaluation task.

The task is constructed based on semantic abstracting with the label taxonomy. Firstly, the attack
targets of existing non-target evaluation methods based on ImageNet labels are often too simple, while
the constraint space of SemanticAE is relatively loose, making it easy for the attack generation model
G to achieve successful attacks easily. For example, it is unreasonable to use the ImageNet label
“tiger-shark” as the misclassification category AText for the instruction Text “great-white-shark”,
since achieving successful attacks in this task may not show the capability of successful attacks in real
scenarios. To clarify the boundary, we re-construct the evaluation label with a better abstraction level
by leveraging WordNet [44] taxonomy. As shown in Figure 6, we firstly construct the hyponymic
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graph based on the hyponymic relation defined by WordNet, then select the proper abstraction level,
and finally define the attack goal as the evasion attack on the abstracted label. Specifically, under the
definition of SemanticAE generation, the evaluation task is formulated as:

Text := "Realistic image of [AbstractedLabel], specifically, [label]",
AText := {labelAdv | AbstractedLabel ̸∈ Ancestors(labelAdv)},

AbstractedLabel ∈ {c ∈ L′ | ∃l ∈ L s.t. c ∈ Ancestors(l) ∧CountChildren(c) > 0},
(9)

where L is the transitive closure of ImageNet labels on the hyponymic graph, the construction of
AbstractedLabel is equivalent to: (1) Remove overly coarse-grained labels through annotation to
obtain the label subset L′. (2) For each linear path, select the node with the lowest height as a
candidate label, constraining the upper bound of the abstracting level. (3) Eliminate descendant labels
of the candidate labels to constrain the lower bound of the abstracting level.

Secondly, from the perspective of semantic constraint evaluation, using another deep-learning model
for evaluation, e.g., CLIP, will limit the benchmark to the robust region of such models. Drawing
upon previous discussions and attempts in evaluation enhancement [17], we further conceptualize the
sub-task of non-adversarial exemplar generation. As shown in Figure 6, the adversarial generator
G is required to simultaneously generate a nearby sample xexemplar ∈ Xexemplar as a proof that
xadv complies with semantic constraints. We further propose the evaluation method based on attack
success rate and pair-wise semantic metric as a complement to the single-image assessments:

ASRRelative =

∑K
i=1 Attack Success(x(i)

adv) ∧ Classification Correct(x(i)
exemplar)

K · Accuracy(Xexemplar)
∈ [0, 1],

SemanticDiffS = ⟨xexemplar, xadv⟩S ,
(10)

where K is the amount of samples, S is a visual similarity metric, such as LPIPS or MS-
SSIM.Measuring local similarity is easier since high-level feature extraction, which could be attacked,
is less required. By assuming the generator G is not motivated towards finding a positive adversarial
example, achieving a high score on both metrics can sufficiently show both adversarial capability and
instruction compliance of G. Notably, ASRRelative evaluation metric imposes a more rigorous as-
sessment for the masked language guidance in Section 3.3, as it eliminates the confounding variations
in benign example generation methods through regularizing with Classification Correct(xexemplar).

4 Experiments
4.1 Experiment Settings
Tasks and Baselines We evaluate different generation methods by generating 6 samples for each
label in the ImageNet 1000-class label evasion task and the proposed abstracted label evasion task.
The baseline method is constructed by combining diverse ❶ Surrogate models, ❷ Transfer attack
methods (MI-FGSM [5], DeCoWA [45]), and ❸ Diffusion-based naturalistic AE generation methods
(AdvDiff [16], SD-NAE [15], VENOM [17]). Note that DeCoWa develops on top of MI-FGSM.
For fairness, we incorporate the same pretrained diffusion model as SD-NAE and VENOM. For 3D
SemanticAE we evaluate the classification models’ performance on the generated video showing the
rotating object. Detailed implementation and settings are shown in Appendix C.

Evaluation Metrics Referenced image quality assessment metrics, including LPIPS [46] and
MSSSIM [47], are been employed to measure the similarity between xexemplar and xadv under the
proposed non-adversarial exemplar evaluation. Also, we supplement the non-reference image quality
assessment CLIP-IQA [48] for the generated images. We do not use FID and IS as a primary metric
since their adapted vision backbones are simple and might be adversarially attacked, and keeping the
feature distribution consistent is not the primary goal of the SemanticAE generation. For attack evalu-
ation, we computed the classification accuracy and ASRRelative, defined in Eq. 10, across diverse
targets set T = {ResNet50 [49], ViT-B/16 [50], ConvNeXt-T [51], ResNet152, InceptionV3 [52],
Swin-Transformer-B [53]}. The first three models are used individually as surrogates in experiments.
The main paper presents the average ASRrelative and accuracy (ACC) on the target model, while the
detailed transfer attack performance on different target models is shown in Appendix D.1. In addition,
we fuse the input-transformation-based module DeCoWa with ResNet50 as one of the surrogate
models to evaluate the collaboration capability of the generation algorithms. 2D / 3D generation
times are benchmarked on a single 4090 or A800 GPU, respectively, by generating 100 samples with
abstracted labels, and are presented in the results with standard deviation.
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Figure 7: ImageNet label results.

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

A
SR

 - 
Su

rr
og

at
e:

 R
es

N
et

50
 (H

ig
he

r i
s B

et
te

r)

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

A
C

C
 - 

Su
rr

og
at

e:
 R

es
N

et
50

 (L
ow

er
 is

 B
et

te
r)

Figure 8: Abstracted label results.

Table 1: Results on more surrogate models. Appendix D shows our Pareto optimality in each setting.

Attacker Settings ImageNet Label SemanticAE Generation Task Coarse Label Evasion Task (Section 3.4)
Surrogates Method Acc.↓ ASR↑ ClipQ↑ MSSSIM↑ LPIPS↓ Acc.↓ ASR↑ ClipQ↑ MSSSIM↑ LPIPS↓ Time(s)↓

ResNet50

MI-FGSM 33.4% 41.5% 0.548 0.880 0.201 61.3% 22.8% 0.551 0.885 0.198 1.43±0.02

AdvDiff 87.3% 4.9% 0.634 0.939 0.046 94.6% 1.8% 0.621 0.992 0.011 19.6±0.01

SD-NAE 37.1% 47.4% 0.841 0.433 0.457 58.6% 31.8% 0.771 0.599 0.308 24.43±0.14

VENOM 34.5% 34.4% 0.795 0.972 0.023 51.0% 34.9% 0.779 0.951 0.043 3.09±0.52

Ours 15.1% 62.0% 0.815 0.961 0.031 35.2% 47.9% 0.808 0.958 0.033 7.26±2.57

ViT-B

MI-FGSM 32.7% 42.4% 0.524 0.855 0.205 58.2% 25.7% 0.521 0.860 0.207 1.46±0.01

AdvDiff 65.6% 30.3% 0.638 0.430 0.390 94.1% 2.2% 0.628 0.972 0.026 20.5±0.01

SD-NAE 33.7% 51.7% 0.844 0.441 0.459 56.1% 33.6% 0.787 0.609 0.300 24.5±0.10

VENOM 30.5% 40.6% 0.796 0.977 0.021 46.3% 40.3% 0.780 0.958 0.040 3.07±0.33

Ours 10.9% 69.7% 0.815 0.956 0.038 28.7% 55.4% 0.814 0.955 0.039 7.23±2.15

ConvNeXt

MI-FGSM 31.9% 44.9% 0.543 0.877 0.204 41.2% 46.4% 0.532 0.88 0.202 1.46±0.01

AdvDiff 52.9% 44.4% 0.636 0.312 0.471 93.3% 3.2% 0.627 0.985 0.017 19.9±0.11

SD-NAE 22.4% 67.3% 0.848 0.432 0.458 53.6% 36.1% 0.782 0.603 0.308 24.5±0.10

VENOM 28.8% 44.6% 0.796 0.978 0.020 42.6% 45.0% 0.785 0.961 0.037 3.14±0.65

Ours 9.1% 75.8% 0.817 0.958 0.036 28.6% 57.4% 0.812 0.957 0.036 6.96±1.96

ResNet50
+DeCoWa

MI-FGSM 23.6% 58.8% 0.535 0.869 0.201 27.9% 63.7% 0.474 0.870 0.207 3.01±0.04

AdvDiff 67.9% 27.5% 0.597 0.761 0.293 93.4% 3.2% 0.629 0.934 0.081 20.8±0.18

SD-NAE 26.6% 61.7% 0.845 0.421 0.470 64.4% 26.3% 0.782 0.568 0.331 24.3±0.07

VENOM 36.1% 31.4% 0.805 0.968 0.027 56.2% 28.1% 0.796 0.944 0.048 4.93±2.67

Ours 10.1% 75.8% 0.810 0.947 0.044 30.3% 57.4% 0.808 0.943 0.048 10.7±3.60

* Attack performance is averaged across targets. Detailed results with the specified target models are shown in Appendix D.

4.2 Overall Performance Evaluation
2D SemanticAE Generation The overall results on 2D SemanticAE generation is shown in
Figure 7 and 8 with the strength of semantic constraint of our method set in ϵ = {1.5, 2, 2.5, 3} and
ϵ = {2, 2.5, 3, 4} via Eq. 5, respectively. Multiple ϵ are applied since it is difficult to control and
align the distortion strength for baselines. The min/max ASR across target models and the standard
deviation of LPIPS across generated images are plotted as bars. Table 1 shows the results of our
method set as ϵ = 2.5. More results are in the appendix. Overall, in any of the 4 surrogate and 2 task
settings, InSUR is able to achieve at least 1.19× average ASR and 1.08× minimal ASR across all
target models in T , and maintains with lower LPIPS (unsuccessful baseline generation with avg.
ASR < 5% are not considered), showing the consistent superiority. The Pareto improvement shown
by the figure is more significant. Moreover, ❶ ϵ-based semantic constraint in Eq. 5 achieves more
consistent LPIPS across images generated in identical settings. ❷ For ClipQ, our method performs
better in the challenging abstracted-label evasion task, while SD-NAE is higher in original tasks.

Table 2: 3D generation results.

Generator Acc. ASR MSSSIM LPIPS

Non-Adversarial 21.5% — — —
Ours w/o ResAdv 17.9% 45.1% 0.658 0.261

Ours 2.8% 92.2% 0.665 0.258

3D SemanticAE Generation We export the video
visualization of the object under MPEG4 encoding,
and evaluate the attack performance by reading it.
The surrogate and target models are both ResNet50.
The results are in Table 2. There is no 3D Semanti-
cAE previously available. It shows that our results
show satisfactory attack performance, validating the
cross-task scalability of InSUR. Note that since 3D-diffusion research is still under development, the
clean accuracy on the generated 3D samples is not high, while making InSUR a growable research.

4.3 Key Ablation Studies
Residual Approximation We evaluate the effects of residual approximation steps k in the adversar-
ial guidance g in Eq 4, under the 2D abstracted label task and the 3D task. In implementation, k is
controlled by the upper-bound parameter K in Eq. 15 in Appendix B.1. The performance improve-
ment is significant and consistent compared to the result without future-step sampling prediction
(K = 0), which represents the original DDIM sampling with adversarial guidance. The naturalness
metrics, including ClipQ, MSSSIM, and LPIPS, are also slightly improved. Moreover, attributed to
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the adaptive iteration mechanism, more accurate estimation leads to lower optimization steps, and
therefore, the increase in time consumption is sub-linear. Detailed results on more settings are shown
in the Appendix D.3. Parameter and time consumption analysis are shown with the implementation
details in Appendix B.

The effect of different k on the process of adversarial optimization is shown in Figure 9. The setting
of Text is a dog sitting on the floor, and the evasion label is dog. As k increases, the estimated ASR
after adversarially sampling xt increases earlier. Since the white-box ASR in both settings is nearly
100%, the improvements are from: (1) by eliminating the referring diversify, the initial sampling
steps receive more accurate guidance. (2) More effective adversarial optimization on earlier diffusion
denoising steps provides better on-manifold regularization, leading to better visual quality and better
adversarial transferability.

Table 3: Ablation of residual approximation

Surro. K Acc. ASR ClipQ MSSSIM LPIPS Time

V
iT

-B

0 43.1% 43.3% 0.794 0.941 0.055 4.53±0.19

1 33.5% 54.7% 0.812 0.942 0.049 6.87±1.48

2 31.3% 56.6% 0.816 0.942 0.049 7.44±1.92

3 29.2% 57.5% 0.807 0.943 0.048 7.75±2.37

4 27.7% 60.1% 0.813 0.944 0.047 7.87±2.31

R
es

N
et

50
+D

eC
oW

a 0 39.8% 47.1% 0.764 0.946 0.053 5.65±0.38

1 36.3% 50.4% 0.812 0.954 0.040 9.64±2.64

2 32.8% 52.6% 0.818 0.955 0.039 10.7±3.27

3 30.4% 53.9% 0.817 0.955 0.039 11.2±3.67

4 29.5% 54.2% 0.814 0.955 0.039 11.5±4.00

3D
Gen.

0 17.9% 45.1% – 0.658 0.261 7.49±1.49

1 3.4% 90.2% – 0.658 0.262 30.4±35.02

2 3.4% 91.2% – 0.659 0.261 32.7±39.17

3 2.9% 91.2% – 0.671 0.255 41.1±53.75

4 2.8% 92.2% – 0.665 0.258 40.1±59.25
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Figure 9: Estimated ASR of x̂0 after
adv. sampling xt, under different set-
tings of k in Eq. 4. Earlier increase of
estimated ASR leads to better natural-
ness and higher attack transferability.

Spatial Masking of Language Guidance We evaluate the effect of guidance masking by setting
Medge/Mmid to different values in Eq. 6, and setting to 1.0 represent removing the masking. The
results are shown in Table 4 and Figure 10, indicating that (1) decreasing Medge leads to an increase
in unconditional guidance, which enriches the background diversity as shown in the figure, and may
lead to the improvements of ClipQ. (2) When the budget ϵ is small (ϵ = 2) and the optimization space
is relatively narrow, diversifying the background is beneficial. Note that ϵ is large, the improvement is
marginal since there is no need for expanding the optimization space. Overall, the guidance masking
design improves diffusion models’ adaptability to strongly constrained SemanticAE generation.

Table 4: Ablation of guidance masking.

ϵ Medge/Mmid Acc. ASR ClipQ MSSSIM LPIPS

2 0.0 32.8% 52.3% 0.813 0.958 0.035
2 0.1 34.5% 50.2% 0.809 0.957 0.035
2 1.0 36.9% 48.3% 0.788 0.958 0.034
4 0.0 16.6% 75.9% 0.804 0.901 0.087
4 1.0 17.3% 75.9% 0.775 0.904 0.084

0.0 0.1 0.2 0.4 0.6 1.0

Instruction: Realistic image of boat, specifically, canoe. Evasion label: boat.

Figure 10: Vis. of different guidance masking.
The value under images denotes Medge/Mmid.

4.4 Visualization of Generated SemanticAEs
We selected the 2D / 3D samples with xexemplar correctly classified and visualized in Fig. 11 and
Fig. 12. 2D samples are generated with the original ImageNet-label and the surrogate model is
DeCoWa+ResNet. 3D samples are generated and visualized as the main experiment. The results
are coherent with the main table, showing that MI-FGSM is not natural, SD-NAE disturbs more
global semantics, while ours achieves both global semantic preservation and naturalness. Through
observation, our method generates local in-manifold patterns to achieve the strong attacks, e.g, adding
fog in the castle image or altering the lightning in the jellyfish image. For 3D results, although the
MSSSIM and LPIPS metrics are not excellent in the main experiment, the generated 3D objects are
natural and follow the semantic constraint. More visualizations are shown in Appendix E.

4.5 Discussions
Extending to Attacking Large Vision Language Models The InSUR framework is agnostic
to specific target models and tasks, and can be directly applied to adversarial attack evaluation
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Figure 11: Comparison of 2D SemanticAEs.

Instruction: Tiger. Original Object ResNet Accuracy: 281/300 Frames

Adv. Object ResNet Classification - Horizontal Bar: 188, Cat: 73, Tiger: 15 

Instruction: Microphone. Original Object ResNet Accuracy: 292/300 Frames

Adv. Object ResNet Cls. - Bottle: 112,,Soap Dispenser: 74, Microphone: 2

Instruction: Custard Apple. Original Object ResNet Accuracy: 297/300 Frames

Adv. Object ResNet Classification - Ball: 297, Custard Apple: 0 Frames

Figure 12: 3D SemanticAEs

in Visual Question Answering (VQA) scenarios. To illustrate the capability, we conduct VQA
experiments using OpenAI CLIP [54] model RN50 (with DeCoWA augmentation) as the surrogate,
using stabilityai/stable-diffusion-2-1-base [55] as the diffusion generator, and generate adversarial
examples for the VQA problem. The question and options are "What is in the picture:" and {Police
car, Ambulance, Taxi, School Bus}. We evaluate weak-to-strong transferability across OpenAI CLIP
variants {RN50, RN101, RN50x4, RN50x16, ViT-B/32, ViT-B/16} and larger vision language models
(VLM), LLaVA [56] and Qwen-7B [57]. The results are in Table 5, showing that our technical
contribution is also effective in the VQA transfer attack task.

Table 5: ASRrelative (%) of attacks. The surrogate model is ResNet50 CLIP model.
Residual

Approximation
Target Model

RN50 RN101 RN50x4 RN50x16 ViT-B/32 ViT-B/16 LLaVa1.5-7B Qwen2.5VL-7B

✗ (K = 0) 77.50 27.50 30.00 11.11 12.50 10.53 11.11 16.22
✓ (K = 3) 97.50 57.50 62.50 27.78 40.00 47.37 22.22 35.14

(a) w/o ResAdv. (b) with ResAdv.

Figure 13: Blender re-rendered 3D Se-
manticAEs with altered lightning.

Broader Applications Our approach also has the po-
tential to extend to real-world adversarial attacks under
the 3DGS representations [31], providing technical tools
for security-related research. We tested our generated 3D
SemanticAE in with lightning, material, and camera set-
tings with Blender environment, and the ResNet50 ACC
is 59.1%, 20.0%, for the two settings in Figure 13, re-
spectively. Although the attack performance is worse than
the original rendering (ACC=7.7%), the relative improve-
ment is significant. Our framework can also be integrated
with existing 3D scene generation pipelines [58], enabling
more effective incorporation of diffusion-based adversarial optimization into world models. This
supports safety-critical scenario generation for applications such as autonomous driving [59, 60] and
embodied agents [61]. On another front, recent work [62] demonstrates that diffusion-generated hard
samples can achieve higher sample efficiency, especially with adversarial guidance, suggesting that
our InSUR framework also holds promise for supporting the generation of adversarial training data.

5 Conclusion
This paper proposes multi-dimensional uncertainty reduction frameworks for SemanticAE generation,
pushes the boundary of the 2D generation, and opens the door to 3D generation. The proposed
technology consistently improves the attack performance and has the potential to scale to other tasks.
Moreover, we believe it could provide valuable insights for the test-time scaling of the red-teaming
framework. For limitations, there is scope for improvement in the generation quality, the evaluation
on larger models, and the application in the real world, suggesting future research avenues of the
SemanticAE generation algorithms based on concrete generative models and the scenario adaptation
methods oriented to real-world scenarios.
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• If error bars are reported in tables or plots, The authors should explain in the text how
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the execution time in Table 1 and 3 on a single 4090 or A800 GPU.
Detailed experiment settings are shown in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with
theNeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impacts are expounded upon in the discussion section in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have reflected Licenses for existing assets in our references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Background and Related Works

A.1 Diffusion models

Diffusion Model This work mainly applies the diffusion model as the language-guided data
generator. As a brief review, diffusion models establish the theoretical and technical route of
estimating the score function ∇X log p(X) of the data distribution X by training UNet models on
the dataset {x}, and sampling the data from the score function with numerical methods. One of
the key insights of diffusion models is alleviating the training difficulty by disturbing the data x
gradually with noise, and models it as a forward process from x0 ∼ X to xT ∼ N (0, I) with the
Markov process Xt =

√
1− βtXt−1 +

√
βtN (0, I) scheduled by β. The training is performed by

learning a denoising process, i.e., learn to predict the distribution qθ(xt−1|xt) with the neural network
ϵθ. During inference, the data is sampled from xT ∼ N (0, I) to x0 step by step with q. DDIM
model reinterprets the forward process as p(xt|xt−1, x0), which abandons the Markov property,
and constructs the sampling method by finding qθ(xt−1|xt, x0). It also provides the theoretical
grounding for the step jumping in the sampling process. The DDIM [38] sampling procedure could
be formulated as (deterministic version):

xt−∆T =
√
ᾱt−∆T /ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
+
√

1− ᾱt−∆T · ϵθ(xt, t), (11)

where ᾱ =
∏t

s=1(1− βs), and ∆T is the step interval. We adapted this notation in the main paper.
The language-guided generation problem is modeled by adding the conditional term Context that
corresponds to the data x and sampling the data by ϵθ(xt, t,Context), where Context is the encoding
given by the language model. To balance the generation diversity and the instruction following,
conditional and unconditional guidance are integrated, i.e., ϵθ = −ωϵθ(xt, t,Unconditional) + (1 +
ω)ϵθ(xt, t,Context), in the classifier-free guidance [63].

Discussions In the application in content edit [40], masking has been applied to constrain the
editing area, i.e. xt−1 = Mask · xt,edit + (1 −Mask) · xt,original. In our 2D generation task, we
take a further step to model the interaction between conditional and unconditional guidance, and
achieve the new function of re-distributing the spatial strength of the semantic constraint. In recent
years, training techniques that enable single-step generation have been proposed [64, 65]. Although
our method is designed with multi-step diffusion models, our method still has practical value since
(1) there is a performance gap between multi-step and single-step diffusion models, and (2) as the
adversarial optimization is performed with local perturbations, sampling in small step sizes might
provide a better regularization for transfer attacks.

A.2 Generating Hard Samples from Language

Language-guided adversarial example generation is still under development. We categorize two
major paradigms. ❶ Perturbing the input text without altering the language-guided data generation
model. A line of study has focused on utilizing the language-guided image edition model to evaluate
the robustness of visual models [66, 67, 68]. Compared to adversarial attacks, they focus more on
enriching the dataset than finding hard examples for victim models, while the adversarial capability is
relatively limited. Related to the discussion in Section 3.2 of the main paper, overly perturbing the text
guidance may lead to unsatisfactory semantic alignment. To solve this problem, [69] integrates the
additional CLIP supervision on the generated image. ❷ Altering the language-guided data generation
model by introducing the adversary capability. Although it has difficulties in global optimization, this
paradigm has an advantage in the fine-grained control of the generated samples.

We focus on the latter paradigm, since (1) Perturbing the text input only will limit the capability of
the generation method within the semantic knowledge learned by both discriminative and generative
models. e.g., a CLIP-based semantic supervision may not attack the CLIP model itself. (2) Optimizing
the input text for the entire data generation process with the adversarial feedback is time-consuming.
These features are crucial from the perspective of SuperAlignment [70], i.e, creating efficient
methodologies that utilize small models with limited capability to build the oversight framework
for larger models. Also, we believe that the two methods could be implemented into an integrated
red-team system, i.e, the language-space reject sampling as the high-level generation method and
the latent-space optimization as the mid or low-level generation module. Therefore, our proposed
evaluation task focuses on the second paradigm, serving as an evaluation of the key component of the
red-team framework.
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A.3 Transfer Attack Methodology

Transferable attack denotes finding adversarial examples that can attack other unknown or even
stronger black-box models, which is practical for revealing real-world AI safety problems. The
general method is to find a surrogate model(s) in the related task and optimize the adversarial example
for it with the regularization. From the perspective of the optimization pipeline, regularization on three
modules has been investigated to improve transferability: ❶ The gradient decent. Momentum is the
general method to boost the transferability. ❷ The surrogate model. Model ensemble can effectively
enhance transferability by combining gradient features from multiple distinct models [71, 72].
Constructing a proper objective using the Sharpness-Aware Minimization (SAM) [73] or the attention
mechanism [3], to model the cross-model vulnerability, is also beneficial for transferability. ❸ The
input transformation. Transfer improvement could be achieved by inserting a random transformation
between the current-step adversarial example and the surrogate model’s input, the [74, 45]. This
could be regarded as improving the diversity of the surrogate model. From the theoretical perspective,
decreasing the cooperation within the adversarial pattern [75] and in-manifold constraint [37] is
beneficial for transferability. In the adversarial example generation pipeline, the generative-model-
based method, which this work focuses on, could be regarded as a replacement of gradient descent
with a better in-manifold constraint. We construct baselines and evaluation tasks based on this
background.

A.4 3D Generation and Gaussian Splatting

3D geometric data employs diverse representations that are crucial in 3D generation. These repre-
sentations can be categorized into three types: ❶ explicit representations, such as point clouds [76]
and meshes [77], ❷implicit representations, such as Neural Radiance Fields (NeRFs) [41], ❸hybrid
representations, such as 3D Gaussian [42]. Currently, 3D Gaussian splatting is widely used in 3D
generation due to the geometric editability, high-frequency detail capture capability and real-time ren-
dering efficiency. Each 3D Gaussian point can be represented by the following parameters: position
x, spherical harmonics coefficients c , opacity α, a rotation matrix r, and a scaling matrix s. Then,
3D Gaussian points can be projected onto the image plane via the viewing transformation W and the
Jacobi affine approximation matrix of the projection transformation matrix in geometry. In terms of
appearance, we can calculate the color of every pixel in the 2D image by blending N ordered points
overlapping the pixel using spherical harmonics coefficients c and opacities α.

With the development of 3D representations, 3D adversarial examples for different 3D structures
have also been advanced [78, 79, 80]. Unlike other adversarial methods, which are based on the
geometric or texture data of existing objects, for the first time, we realize the reference-free generation
of semantically constrained 3D adversarial examples by utilizing language-guided 3D generation
models. We implement language-guided 3D adversarial example generation through the ResAdv-
DDIM sampler referencing the optimization pipeline of Trellis in latent space and decode into 3D
Gaussian formats. Then, we achieve 3D adversarial attacks on 2D target models using 3D Gaussian
rendering.

B Detailed Implementation of InSUR Framework

Adversarial attacks often require reengineering existing tools to achieve new functions, and their
implementation is not simple, especially when achieving new characteristics. Therefore, we provide
the design principles and the key techniques in the main paper, and supplement the detailed implemen-
tation in this section as a complement. In the following subsections, we describe the implementation
of the SemanticAE generator based on the different scenarios, and then provide more details about
the Semantic-abstracted Attacking Evaluation Enhancement.

B.1 2D Image Generation

ImageNet Object Generation with Guidance Masking For the classical image generation prob-
lem, we start with the original DDIM sampling process:

xt−∆T =
√
ᾱt−∆T /ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
+
√

1− ᾱt−∆T · ϵθ(xt, t), (12)
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where ᾱ =
∏t

s=1(1− βs) is the sampling parameter, and ∆T is the step interval. As described in
section 3.3, masked guidance is adapted as the conditional diffusion guidance, which formulates the
denoise function xt−∆T := fθ,∆T (xt) as:

f
(t,Text)
θ,∆T (xt) =

√
ᾱt−∆T

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t,Text)

)
+

√
1− ᾱt−∆T · ϵθ(xt, t,Text),

ϵθ(xt, t,Text) : = (1−M) · ϵθ,Unconditional(xt, t) +M · ϵθ,Conditional(xt, t,Text).
(13)

The guidance mask is defined as a matrix with different values in the border elements:

Mij :=

{
Mmid

h
16 ≤ i < 15h

16 , w
16 ≤ j < 15w

16 ,

Medge otherwise.
(14)

In the main paper, we use the simplified notation of f without parameters Text and t explicitly
written. Here we use the detailed notations. For the experiments, we adapted Mmid = 3.0 and
Medge = 0.3 in the main experiment and selected Medge = {0.0, 0.3, 3.0} in the ablation study.

Residual Approximation Recall that ResAdv-DDIM defines a residual estimation function g for
the adversarial feedback of the target model. We construct the step size of g as evenly distributed:

g
(t,Text)
θ (xt) := f

(∆T1,Text)
θ,∆T1

◦ f (∆T2+∆T1,Text)
θ,∆T2

◦ · · · ◦ f (t,Text)
θ,∆Tk︸ ︷︷ ︸

k times

(xt), where
k∑

i=1

∆Ti = t,

k := ⌈ t

⌊T/K⌋
⌉, ∆Ti(t) =

{
⌊T/K⌋, 1 < i ≤ k

t mod ⌊T/K⌋, i = 1
,

(15)

where K is the maximal iteration number, corresponding to Itermax in the ablation study in the main
paper. For brevity, we define T as the number of sampling steps of the original DDIM generator and
use the sampling interval of the original DDIM generator as the unit of ∆T . We let ts (default set
as 0.75) be the start step of the adversarial optimization, and the sampling process with adversarial
optimization is formulated as:

xt−∆T =

{
f
(t,Text)
θ,∆T

(
argmaxxt LATK(M◦ g(t,Text)θ (xt))

)
, t ≤ ts,

f t,Text
θ,∆T (xt), t > ts.

(16)

Collaborating with Guidance Masking To generate attack-related image backgrounds without
disturbing the foreground semantics, as the goal of Context-encoded Attacking Scenario Constrain, we
let the exemplar generation x′

t → x′
t−∆T communicate with the adversarial generation xt → xt−∆T .

Specifically, at the beginning of the adv. optimization in step ts, we set the benign sample generated
from x′

ts ← xts as the initialization of the constraint anchor. At the end of the adversarial optimization,
the optimized background is written back x′

0 [M = Medge]Select ← 1
2 (x0 + x′

0) [M = Medge]Select
after the generation.

Adaptive Optimization Iteration To improve the efficiency in multi-step diffusion-based adversar-
ial optimization, we implement the adaptive iteration mechanism for ResAdv-DDIM by early-stopping
the optimization problem in Eq 16, which is formulated as:

n :=

{
M, t = ts ∨ t < 4,

m, otherwise.

PerformOptimize := (i ≤ n ∧ arg max
l ̸∈AText

P(M(xt) = l) > ξ1)︸ ︷︷ ︸
If confidence≤ξ1, early stop. Maximal optimize iterations is n.

∨

(i = 1 ∧ arg max
l ̸∈AText

P(M(xt) = l) > ξ2)︸ ︷︷ ︸
If confidence≤ξ2, do not optimize at the first step.

,

(17)

where i is the current iteration number, and n stands for the maximal adversarial optimization iteration
in the single diffusion step. We set ξ1 = 0.1, ξ2 = 0.01, and set m = 3 and M = 10 for diversified
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Table 6: Analysis of the different setting of ξ
ξ1 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05
ξ2 0.02 0.01 0.005 0.02 0.01 0.005 0.02 0.01 0.005

ResNet50 ACC↓ 0.0224 0.0192 0.0214 0.0246 0.0246 0.0246 0.0224 0.0256 0.0246
ViT-B/16 ACC↓ 0.2949 0.2885 0.2885 0.2853 0.2724 0.2714 0.2404 0.2382 0.2511

strategy in different sampling steps, i.e., the initial and final steps are set with a higher maximal
iteration number (n = M).

In Table 6, we present a parameter analysis of ξ1 and ξ2 using ResNet50 as the surrogate model on
the Abstract Label Evasion Task. In white-box attacks, all tested threshold values achieve strong
performance (accuracy after attack < 3%). In black-box attacks, smaller ξ1 values yield higher
transferability, because lower ξ1 leads to more aggressive adversarial optimization in early denoising
steps—optimization that tends to be more transferable (this is consistent with the design principle
of ResAdv-DDIM, which aims to enhance early-step optimization). However, this also increases
computational cost. A practical deployment could balance effectiveness and efficiency.

Attack Loss Construction For the classification task, given the incorrect label set AText, we
implement the loss as:

LATK := −Logits[L̂Tar]. (18)

Where Logits is the model’s prediction, and L̂Tar is the estimated highest confidence label in the
incorrect label set AText. We maximize LATK to perform the attack. For the current denoising step
xt, the logits are estimated based on the residual approximation function and the surrogate model,
i.e., Logits =M(g

(t,Text)
θ (xt)). To further eliminate guidance fluctuation, we adapt the fixed L̂tar

after its initialization in the initial steps of attack optimization (target label update delay). Note that
our adversarial attack method is not designed for the classification task only, and the loss construction
could be substituted regarding the specific adversarial example generation task.

The overall SemanticAE generation algorithm is constructed by further integrating global perturbation
constraints, momentum gradient optimization, target label update delay (after t < tk = 0.4T ) through
the bi-level optimization. The pseudo-code is shown in Algorithm 1. The default configuration for
other parameters is coherent with related baselines, i.e., β = 0.5, s = 0.7, T = 100.

Algorithm 1: ResAdv-DDIM
Require: Input: Text,M, AText, f, ϵ, optimization parameters T,K, ts, tk, β, s

Init xT ∼ N (0, I), vx ← 0, x′
T ← xT .

for t = T, ..., 1 do
if t ≤ ts then

for i = 1, 2, ..., n do
if ¬PerformOptimize (Eq. 17) then

break /* Adaptive Iteration */
if t = ts ∨ t < tk then

L̂Tar = argmaxL∈AText
M(g

(t,Text)
θ (xt))logits[L] /* Target Update */

vx ← βvx − (1− β)∇xt
LATK. /* Momentum Updates */

1 xt ← xt + s ∗ vx. /* Adversarial Optimization */

if t = ts then
x′
t−1 ← xt−1 /* Determine Exemplar on Step ts */

xt−1 ← f
(t,Text)
θ,1 (xt)))(xt) /* DDIM Sampling Step for xadv */

2 x′
t−1 ← f

(t,Text)
θ,1 (xt)))(x

′
t). /* DDIM Sampling Step for xexemplar */

3 xt−1 ← xt−1 +min{ϵ, ||x′
t−1 − xt−1||2} ·

x′
t−1−xt−1

||x′
t−1−xt−1||2 . /* Semantic Constraint */

return x0, x′
0.
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By counting, the step number of the forward or backward process of diffusion-UNet is less than
(2mts + 8M)K + ts + T . The maximal memory cost of the backward process is ⌈ ts

⌊T/K⌋⌉× the
parameters in the feature maps of the diffusion-UNet, combined with other modules, including the
surrogate model, the input transformation, and the VAE-decoder in the optimization pipeline. In
practice, the time consumption is significantly lower than the upper bound due to the adaptive iteration
mechanism, and the lower bound is characterized by:
Proposition B.1 (Lower Bound of the Diffusion Step). For ResAdv-DDIM with the total sampling step
T , the parameter of approximate iterations in g as K, the timestep of start adversarial optimization
as ts, the lower bound of the diffusion step is:

(
K · ts
T

+ 3) · ts
2
+ T, (19)

if K and ts are set as K|T and T
K |ts.

Proof. From K | T and T
K |ts, let T = K · d where d ∈ Z+, ts = d ·m where m ∈ Z+. Under the

optimal implementation, the forward process in the early-stop judgment and the optimization step are
reused. Consider the case of always early-stopping, the total number of approximate iterations in g is∑ts

t=1⌈
t

⌊T/K⌋⌉, we have:

ts∑
t=1

⌈ t

⌊T/K⌋
⌉ =

dm∑
t=1

⌈
t

d

⌉
=

m∑
k=1

d∑
t=1

⌈
kd+ t− d

d

⌉
=

m∑
k=1

(d · k) = dm(m+ 1)

2
. (20)

By combining the total denoising step of xadv and xexemplar generation, the total step is:

dm(m+ 1)

2
+ ts + T =

ts
2
· (K · ts

T
+ 1) + ts + T = (

K · ts
T

+ 3) · ts
2
+ T. (21)

This completes the proof.

B.2 3D Object Generation

Base 3D Generation Method (Trellis) : Representing 3D data as matrices is inefficient and
impractical due to computational problems. Our method is developed based on the Trellis model,
which bridges the gap between 3D structure and the diffusion process with the structured latent
(SLAT). The overall generation process could be formulated as:

zslat
0 = Diffusion Sampling(ϵslat, zslat

t ,Text), zslat
T ∼ N (0, I)

pos = Coords(Dslat(z
slat
0 )), Coords : Rb×h×w×d → Rb×n×2

z0 = Diffusion Sampling(ϵ,zT , pos,Text), zT ∼ N (0, I)

ModelGS = DGS(z0,pos), DGS : {(zi, posi)}Li=1 → {{(xk
i , c

k
i , s

k
i , α

k
i , r

k
i )}Kk=1}Li=1

x = RendererGS(ModelGS,Camera).

(22)

where z0 and zslat
0 are latents sampled by the diffusion model, and are represented by sparse and

dense tensors, respectively. Dslat is the coarse structure decoder, Coords transforms the voxel to point
positions pos, DGS is the refined structure decoder that decodes each vertex into multiple Gaussian
points, and RendererGS renders the Gaussian model to 2D images x with the camera parameter.
Since the refined position is also encoded in z0, we implement the proposed ResAdv-DDIM with the
noise estimation network ϵ that models the refined structure.

RendererGS is the Gaussian renderer proposed in Gaussian splatting. Due to its advantage in
optimization, we select this representation as the intermediate 3D data structure for gradient estimation.
Specifically, the 3D Gaussian with center point p can be expressed as the Gaussian function:

G(p) = e−
1
2p

TΣ−1p (23)

To get a 2D projection image x from a 3D Gaussian point in a world coordinate with a viewing
transformation W , the 2D covariance matrix Σ

′
as:

Σ
′
= JWΣW

′
J

′
, (24)
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where J is the Jacobi affine approximation matrix of the transformation matrix. To render the entire
Gaussian model, the color of every pixel in the 2D image x is computed by blending N ordered
points overlapping the pixel using the following equation:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (25)

where ci is the color of each point evaluated by spherical harmonics (SH) color coefficients and (αi)
is determined by a 2D Gaussian with covariance Σ and optimizable per-point opacity.

Residual Approximation with EoT We adapt the expectation-over-transformation to bridge the
2D and 3D adversarial generation. By integrating the renderer, the residual approximation g and the
adversarial optimization are represented as:

g
(t,Text)
θ (zt,pos,Camera) :=

RendererGS

(
DGS(f

(∆T1,Text)
θ,∆T1

◦ · · · ◦ f (t,Text)
θ,∆Tk

(zt,pos),pos),Camera
)

zt−∆T :=f
(t,Text)
θ,∆T

(
argmax

zt
ECamera∼PCam

[
LATK(M(g

(t,Text)
θ (zt,Camera,pos)))

]) (26)

The camera settings are sampled based on the original configuration in Trellis framework that defines
PCam, i.e.:

∆yaw ∼ U
(
−π

4
,
π

4

)
,

∆pitch ∼ U
(
−π

4
,
π

4

)
,

eye = 2 ·

[
sin(θyaw +∆yaw) cos(θpitch +∆pitch)
cos(θyaw +∆yaw) cos(θpitch +∆pitch)

sin(θpitch +∆pitch)

]
,

R = LookAt(From=eye,To=(0, 0, 0),UpAxis=Z),

Extrinsics =

[
R t
0 1

]
,

Camera = [Extrinsics, Intrinsicsfov=40◦ ] ,

(27)

where the eye position eye is sampled on the sphere with r = 2, and the camera is toward the
coordinate origin. Based on the practice of expectation-over-transformation(EoT) [29], the inner-loop
optimization is performed by averaging the gradient from different sampled cameras:

Cam[1, 2, ..., E]← Sample(PCam).

grad =
1

E

E∑
i=1

∇ztLATK(M◦ g(t,Text)θ (zt,pos,Camera))

vz ← βvx + (1− β) · grad
zt ← zt + s ∗ vz,

(28)

where E is the step of EoT with the default value 1. For the optimization-related configurations,
we maintained most of the parameters in 2D generation: ϵ = 10, K = 4, M = m = 30/E,
ξ1 = ξ2 = 0.01, β = s = 0.5 and ts = 0.75T . The target label delay update mechanism is not
applied. Diffusion-related configurations are coherent with the original pipeline, i.e., T = 50.

Overall time Consumption We conducted a timing analysis on a single GPU using 100 labels from
the ImageNet-Label dataset. The results are shown in Tabel 7. Gradient computation and residual
approximation account for the majority of the computational cost. Meanwhile, EoT sampling is
implemented via multi-view rendering using the Gaussian splatting renderer, while the rendering
parameter computation does not occupy CUDA execution time. The variation in generation time
arises from the adaptive number of optimization steps and differences in the size of sparse tensors in
the Trellis framework. Specifically, in single iteration, fluctuation in computation speed is primarily
caused by inconsistent data sizes in the Sparse Tensor. For the entire optimization, the fluctuation in
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Table 7: GPU Time Consumption for Adversarial Optimization
Process Single Iteration (ms) Entire Optimization (ms)

Denoise Sampling 123.321 ± 36.878 2994.933 ± 269.841
Residual Approximation 147.256 ± 76.243 7040.238 ± 8915.112
Gaussian Decoding 21.547 ± 11.868 1029.394 ± 1185.636
Gaussian Rendering 28.556 ± 7.706 1364.221 ± 1732.996
Surrogate Model 6.777 ± 0.745 323.782 ± 423.503
Backward Process 208.471 ± 78.039 6261.577 ± 12119.871

entity, physical_entity, object, ungulate, whole, animal, organism, vertebrate, vascular_plant,
instrumentality, mammal, placental, carnivore, vehicle, herb, self-propelled_vehicle, am-
phibian, canine, domestic_animal, electronic_equipment, device, container, covering, con-
veyance, commodity, monkey, abstraction, consumer_goods, structure, invertebrate, artifact,
ruminant, invertebrate, matter, wheeled_vehicle, arthropod, causal_agent, reptile, equip-
ment, implement, even-toed_ungulate, garment, game, diapsid, primate, protective_covering,
relation, restraint, ape, natural_object, psychological_feature, geological_formation, at-
tribute, starches, obstruction, aquatic_vertebrate, old_world_monkey, process, barrier,
new_world_monkey, substance, communication, establishment, feline, tool, clothing, food,
solid, piece_of_cloth, brass, screen, shelter, grouse, machine, vessel, craft, arachnid, fabric,
durables, thing, place_of_business, reproductive_structure, plant, event, material, fastener,
woody_plant, measure, home_appliance, mechanism, seafood, cognition, part, organ, group,
game_equipment, shape, rodent, military_vehicle, area, mechanical_device, substance, nu-
triment, amphibian, salamander, support, produce, natural_elevation, mollusk, crustacean,
aquatic_mammal, signal, indefinite_quantity, act, public_transport, hand_tool, medium, box,
state, kitchen_appliance, edible_fruit, toiletry, shellfish, ware, utensil, fur, foodstuff, cloak,
big_cat, footwear, ball, instrument, person, measuring_instrument, sports_equipment, stick,
worker, insect, computer, lepidopterous_insect, vine

Figure 14: Overly polysemous tags filtered out

computation speed is also attributed to the adaptive optimization steps. Specifically, the average count
of optimization steps for the inner optimization is: 47.810 (std=63.566). Attributed to the proposed
early stopping mechanism, easier attack cases require fewer iterations and thus less time. The large
variance in generation time reflects significant differences in attack difficulty across tasks, which
highlights the effectiveness of our adaptive step design.

B.3 Construction and Analysis of Semantic-Abstracted Evaluation Task

Abstracted Label Set Construction As described in the main paper, we construct the coarse label
set based on three steps: (1) hyponymic graph based on the hyponymic relation defined by WordNet,
(2) select the proper abstraction level, (3) define the attack goal as the evasion attack on the abstracted
label. Specifically, the hyponymic graph is defined as a directed graph G = (V,E), E ⊂ V × V ,
where each vertex V represents a word, each edge e : v1 → v2 denotes that the word v2 is a
hypernym of v1. We denote the ImageNet label set as the vertex set L ⊂ V , and construct the
subgraph G′ = (V ′, E′) as

V ′ = TCG(L) :=
{
v ∈ V | ∃u ∈ L,∃k ∈ N, (u k−→ v) ∈ E+

}
G′ := (V ′, E′)⟩ where E′ = {(u, v) ∈ E | u, v ∈ L′}

(29)

Where TC denotes the transitive closure and G′ is the induced subgraph. Next, we select the
abstraction level. We first annotated and filtered out the following over-coarse labels from the vertex
set V ′, resulting in the label set L′. We also filter out polysemous tags listed in Figure 14.

Then, for each linear path, we select the node with the lowest height (or has more than one direct
hyponym) as a candidate label, constraining the upper bound of the abstracting level, and eliminate
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descendant labels of the candidate labels to constrain the lower bound of the abstracting level. These
labels are represented as the AbstractedLabel. We construct the SemanticAE generation task by
evading the AbstractedLabel, which is formulated as:

find xadv ∈ S(Text) s.t.M(xadv) ∈ AText,

Text := "Realistic image of [AbstractedLabel], specifically, [label]",
AText := {labelAdv | AbstractedLabel ̸∈ Ancestors(labelAdv)},

AbstractedLabel ∈ {c ∈ L′ | ∃l ∈ L s.t. c ∈ Ancestors(l) ∧CountChildren(c) > 0},

(30)

For simplicity, we use the term c ∈ Ancestors(l) to denote there exists a path from l to c, and the
term CountChildren(c) > 0 to denote the in-degree of c > 0. We select the abstracted label with
more than 3 hyponym Image labels as the label set in the experiment. The abstracted labels and the
corresponding hyponym imagenet labels are shown in Table 9.

Discussions on the ASRrelative metric. We design ASRrelative to match the goal of facilitating
the red-teaming framework, as described in Section 3.1 of the main paper The following proposition
describes the relation between the ASRrelative evaluation metrics of SemanticAE generator and the
application scenario of the multi-round reject-sampling-based data generation pipeline.
Proposition B.2 (ASRrelative characterize the upper-bound probability of the successful attack). For
any adversarial sampling algorithm K that generates the SemanticAE with ASRrelative = p on the
evaluated black-box modelMT and the surrogate modelMS , there exists an attack algorithm that
achieves the successful attack with at least probability p · (1− ϵ) onMT , the average generation

times less than 1/ps, and the maximal generation times
⌈

log(ϵ)
log(1−ps)

⌉
, for any 0 < ϵ < 1, if the

following assumption holds true:

1. Non-Positive Attack: For the sample generated from the instruction Text and the generation
algorithm does not perform adversarial optimization towards misleadingM towards the
labels corresponding to Text, the correct classification leads to semantic alignment, i.e.,
M(x) ∈ LText → (x+ δ) ∈ S(Text), where LText is the correct label corresponding to
Text and LText = AText, and δ is a small perturbation with δ > ⟨xexemplar, xadv⟩.

2. The sampling algorithm can generate a sample satisfyingM(x) ∈ LText at least a proba-
bility of ps by only accessing the instruction Text.

3. Adjacency Assumption: P (MT (xadv) ∈ LText | MT (xexemplar) ∈ LText) >
P (MT (xadv) ∈ LText | MS(xexemplar) ∈ LText), where MS is the surrogate model,
MT is the target model.

4. Consistency Assumption: ASRrelative = P (MT (x) ∈ AText | MT (x) ∈ LText) for the
instruction Text given in the attack scenario.

Proof. We construct the Las Vegas-style sampling algorithm with the surrogate modelMS . The
sampling algorithm is re-run ifMS(xexemplar) ̸∈ LText, until it reaches the upper-bound iteration⌈

log(ϵ)
log(1−ps)

⌉
.

For the case of MS(xexemplar) ∈ LText, based on assumption (1), xadv ∈ S(Text). Based on
assumptions (3) and (4), we have

P (MT (xadv) ∈ AText) = P (MT (xadv) ∈ AText | MS(xexemplar) ∈ LText)

= 1− P (MT (xadv) ∈ LText | MS(xexemplar) ∈ LText)

> 1− P (MT (xadv) ∈ LText | MT (xexemplar) ∈ TText) (by Assumption (3))
= P (MT (xadv) ∈ AText | MT (xexemplar) ∈ TText)

= ASRrelative = p (by Assumption (4))
(31)

Therefore, with probability p, xadv is a successful attack. Since P (MS(xexemplar) ∈ LText) > ps,
the final success attack rate is :

Pfinal = p · (1− (1− ps)
⌈ log(ϵ)

log(1−ps)⌉) > p · (1− (1− ps)
log1−ps ϵ) = p · (1− ϵ) (32)
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The expected execution time of the sampling is:

E[T ] =
⌈ log(ϵ)

log(1−ps)⌉∑
k=1

(1− ps)
k−1ps <

∞∑
k=1

(1− ps)
k−1ps = ps ·

1

(1− (1− ps))2
=

1

ps

This completes the proof.

We acknowledge that the evaluation might still not be adequate as it requires the assumption of
Non-Positive Attack. However, the defect of the original non-reference evaluation is already shown in
our experiments (detailed in Appendix D.4).

C Detailed Experiment Settings

C.1 2D Experiment Settings

Baseline Descriptions Our baseline method is constructed based on the categorization of the
transfer attack method in Appendix A.3 and based on the discussions in Appendix A.2. Since
the proposed module belongs to the intersection of the diffusion-based adversarial attack and the
optimization methodology, we select the classical MI-FGSM [5], which is the base method of recent
transfer attacks, and three diffusion-based adversarial optimization methods that are recently proposed
and are suitable for SemanticAE , including AdvDiff [16], VENOM [17] and SD-NAE [15]. SD-NAE
applies the gradient back-propagation optimization over the full diffusion steps, with the optimization
formula as follows. It belongs to the first optimization paradigm discussed in Section 3.2

max
TextEmbedding

LATK(M(fTextEmbedding
θ,∆T ◦ fTextEmbedding

θ,∆t ◦ · · · ◦ fTextEmbedding
θ,∆t︸ ︷︷ ︸

T/∆T times

(xT ))), (33)

AdvDiff and VENOM alter the latent embedding xt during the diffusion denoising process, and
belong to the second optimization paradigm discussed in Section 3.2. Compared to AdvDiff, VENOM
applied the additional momentum mechanism and the early-stopping mechanism to the optimization
process. Also, it tries to resample xT based on the adversarial direction of x0 when the optimization
fails on the surrogate model. Our method, besides the technical improvement discussed in the main
paper, adds a more fine-grained scheduling of optimization steps based on the new optimization
paradigm. And we do not add the resample mechanism since it is not redundant if our method is used
as a sampling module in an attack/data generation system that could perform reject sampling based
on the application scenarios.

We integrate an input-transformation-based method (DeCoWA [45]) as the surrogate model to
evaluate the collaboration capability of our method and other methods. We set the num_warping=2
for diffusion-based and our attacks, and num_warping=10 for MI-FGSM. The latter setting is
consistent with the overall attack pipeline evaluated in the DeCoWA paper.

For the diffusion baselines, AdvDiff adapts the classifier guidance and takes the image class as the
input of the diffusion model, while VENOM and SD-NAE adapt the classifier-free guidance. SD-NAE
alters the selected text embedding by solving the maximization problem described in the main paper,
and therefore maxLATK(M(fθ,∆T ◦ fθ,∆t ◦ · · · ◦ fθ,∆t(xT ))), Advdiff adapts the approximated
optimization ′

t−∆T = fθ,∆T (argmaxx′
t
LATK(M(x′

t))), and VENOM introduces conditional opti-
mization and momentum mechanisms on it to stabilize the optimization. The diffusion model applied
in VENOM and SD-NAE is bguisard/stable-diffusion-nano-2-1, and latent-diffusion/cin256-v2 is
applied for AdvDiff. We implemented our code based on the baselines VENOM and SD-NAE, and
adapted the same diffusion model for consistent evaluation. In principle, our method can scale to
larger models and is evaluated on the Trellis 3D generation model.

Surrogate and Target Models As described in the main paper, we adapt the target model set as T =
{ResNet50 [49], ViT-B/16 [50], ConvNeXt-T [51], ResNet152, InceptionV3 [52], Swin-Transformer-
B [53]}, and the surrogate model set as {ResNet50, ViT-B/16, ConvNext-T, ResNet50+DeCoWA}.
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Loss Function We employ the same loss function as the original implementation for the baseline
methods. For our model, we set the loss function in both 2D and 3D SemanticAE generation task as:

LAtk(logits, AText, LTar) = LogSoftMax(logits)[LTar]−
1

|AText|
∑

i∈AText

LogSoftMax(logits)[i],

(34)
Where LTar is the currently selected label (the label with the highest confidence in the set AText),
and log softmax denotes log ex∑

ex .

Image Quality Assessment Metrics To evaluate semantic constraints, the pairwise semantic metric
is proposed to measure the similarity between xexemplar and xadv, which defines as follows in the
main body of our work:

SemanticDiffS = ⟨xexemplar, xadv⟩S , (35)

S is a visual similarity metric; we employed LPIPS and MS-SSIM for evaluation. Parameters of
the evaluation metrics are adapted as common practice. For MS-SSIM, we adapt kernelsize = 11
and σ = 1.5. For LPIPS, we adapt AlexNet as the local feature extractor. For ClipQ, we use the
implementation of piq [81] and adapt openai/clip-vit-base-patch16 as the image embedding extractor.

C.2 3D Experiment Settings

This section details the comprehensive framework established for the evaluation of 3D video genera-
tion models, encompassing dataset preparation, video synthesis methodologies for both benign and
adversarial examples, and the metrics employed for performance assessment.

Dataset Preparation The ImageNet dataset, while extensive, contains labels with fine-grained
semantic distinctions that can be challenging for text-to-3D video generation models to differentiate
effectively. A coarse-graining procedure was applied to the Original Imagenet labels to address this.

Specifically, a predefined mapping, detailed in Table 9, was utilized to merge semantically similar
labels. This process involved replacing the Original ImageNet labels with their corresponding
Abstracted Labels. The resultant collection of these processed Abstracted Labels served as the prompt
dataset for the subsequent video generation tasks. Let L be the set of Original ImageNet labels
and Tcoarse be the set of Abstracted Labels. The mapping function M : L → Tcoarse transforms
each Original ImageNet label to its Abstracted Label. The set of prompts used for generation is
P = {t|t ∈ Tcoarse}.

3D Video Generation Two categories of video samples were generated: clean samples and ad-
versarial examples. Clean video samples were synthesized using the TRELLIS[43] model. For
each prompt p ∈ P , a corresponding clean video Vclean was generated. Adversarial examples were
generated based on the TRELLIS[43] model (version TRELLIS-text-base), employing a ResNet-50
model, pre-trained on ImageNet, as the surrogate model for guiding the adversarial attack. The
generation of these adversarial examples was performed using our proposed methodology. During
each generation instance, an abstracted text label p ∈ P was used as the input prompt. The target
label for the attack was set to any Original ImageNet label ltarget ∈ L such that M(ltarget) = p. A
constant perturbation strength, denoted as ϵ, was maintained at 10.0 across all adversarial generation
processes. All videos are captured by the original rendering pipeline, i.e., a camera surrounding the
object.

Evaluation Metrics The evaluation of the generated videos involved a frame-by-frame analysis
using a pre-trained ResNet50 classifier.

For a given video V , consisting of N frames {f1, f2, . . . , fN}, each frame fi was individually
classified by the ResNet-50 model. This yields a sequence of Original Imagenet labels, ci =
ResNet50(fi). Each ci was then mapped to its Abstracted Label ti = M(ci). The overall model
prediction for the video V , denoted as PV , was determined by the mode of these frame-level
Abstracted Label predictions:

PV = mode({t1, t2, . . . , tN})
where mode(·) returns the most frequently occurring element in the set.
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A video V was deemed correctly classified if its model prediction PV matched its ground truth
Abstracted Label GV . It was observed that, under certain parameter configurations (particularly
for varying K), a minority of video generation attempts might fail. To ensure a rigorous and
controlled comparison, a data curation step was implemented. The intersection of successfully
generated videos across all conditions – clean samples (Vclean) and all sets of adversarial examples
(V (0)

adv, V
(1)
adv, V

(2)
adv, V

(3)
adv, V

(4)
adv) – was taken. Only videos present in this intersection were considered

for the final evaluation. This ensures that performance metrics are calculated over an identical set of
video instances, thus isolating the impact of the varied adversarial generation parameters.

Following the procedures outlined above, the Accuracy (ACC) and Attack Success Rate (ASR) were
calculated. The specific mathematical formulations ASR are provided in the main body of this work.

D Detailed Results and Discussions

D.1 Transfer Attack Analysis

Experimental settings We select VENOM, MI-FGSM, SD-NAE, and AdvDiff as baseline meth-
ods, employing four surrogate models: ResNet50, DeCoWa, ConvNext-T, and ViT-B/16. Six target
models are evaluated: ResNet50, ResNet152, ConvNext-T, ViT-B/16, Swin-B, and InceptionV3. For
Abstracted Label tasks, our method adopts four different perturbations ϵ = {2, 2.5, 3, 4}, while Origi-
nal Imagenet label tasks use ϵ = {1.5, 2, 2.5, 3}. For each surrogate-target model pair, adversarial
examples are crafted using both our method and baselines. Evaluation metrics include Attack Success
Rate (ASR) , Accuracy (ACC) and LPIPS (lower values indicate better perceptual quality).

Data presentation Due to the inconsistency between different surrogate-target model pairs, we
chose to present the experimental results using subplots. The x-axis represents the selected surrogate
models, and the y-axis represents the attacked target models, with a total of 24 subplots. The
experimental results are shown in Figure 20, 21, 22, 23.Figure 20, 22 display the relationship between
LPIPS and ASR/ACC for examples generated by different methods in the abstracted label task.
Figure 21, 23 show the relationship between LPIPS and ASR/ACC for examples generated by
different methods in the original Imagenet label task. In the figures, data points of different colors
represent different methods. The data points of our method under varying perturbation strengths are
connected by lines, and its trend is fitted with a black dashed line. As a supplement, the numerical
results with the standard deviation of the final metric over 6 random seeds are shown in Table 11 and
Table 11, demonstrating the stability of the results.

Analysis Based on the observations from Figure 20, 21, the following conclusions can be derived:

• In our method, as the perturbation parameter ϵ gradually increases, ASR also rises, but the
LPIPS increases as well. The relationship between ASR and the Natural logarithm of LPIPS
essentially forms a straight line with a positive slope.

• The adversarial examples produced by SD-NAE (yellow markers) exhibit higher LPIPS
in almost all cases, indicating that this method introduces more noticeable perturbations.
However, compared to other baseline methods, SD-NAE does not always achieve a higher
attack success rate.

• The adversarial examples produced by MI-FGSM (purple markers)have lower LPIPS than
SD-NAE, but still significantly higher than our proposed attack method.

• The LPIPS of adversarial examples generated by VENOM (green markers) is comparable to
our method. However, at similar LPIPS levels, our method achieves a higher ASR in most
cases.

• AdvDiff (blue markers) produces adversarial examples with the lowest LPIPS, indicating
better stealthiness. However, its attack success rate is significantly lower than all other
methods.

Conclusion To summarize, in all 48 settings of this study, except for two cases (the first row, first
column and first row, fourth column in Figure 20) where our method was slightly worse than the
VENOM method, the remaining ASR-LPIPS curves of our method were all located above and to the
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left of the comparison methods. In Figure 22, 23, all the methods, except for the VENOM method in
the two subfigures of Figure 22(the first row and first column, and the first row and fourth column),
are on the ACC-LPIPS curves of our method. This means our method achieved higher attack success
rates at the same LPIPS levels. These results clearly demonstrate that our method outperforms the
comparison methods in most cases (46/48). In addition, these exceptions both occurred in white-box
attack scenarios, which were not our primary focus. VENOM achieved higher white-box accuracy
by repeatedly resampling through rejection, while we treated this as a module separate from the
Adversarial Sampling algorithm.

Therefore, our InSUR framework shows significant superiority in adversarial transferability.

D.2 Attack Robustness Analysis

Experimental settings : This experiment discusses the performance of our method compared
to baseline methods when facing adversarial defenses. The defense methods used are JPEG and
DiffPure. JPEG applies lossy compression to images (with a quality factor of 75 in this experiment),
while DiffPure removes adversarial perturbations by feeding samples into a diffusion model for
regeneration.

Data presentation : Figure 24, 25 show the results of our method and comparison methods on
both defended and undefended models. Solid dots represent undefended results, while hollow dots
represent defended results, with arrows indicating the impact of applying defenses.

Analysis :

• MI-FGSM: JPEG is a rule-based defense method, whereas DiffPure is a defense based
on the in-manifold assumption. Due to the lack of in-manifold regularization, MI-FGSM-
generated adversarial examples are less robust against DiffPure, showing a noticeable
performance drop. This can be seen in Figure 24 vs. Figure 25.

• AdvDiff: As diffusion-based adversarial example generation method,it exhibit strong robust-
ness against DiffPure (also diffusion-based).Figure 25 shows that their attack success rates
(ASR) even increase after DiffPure defense, though they still underperform our method.

• SD-NAE: SD-NAE is also a diffusion-based adversarial example generation method, so it
exhibits strong robustness against DiffPure. Besides, SD-NAE applies perturbations through
text embeddings, which results in better performance in transfer attacks. However, this does
not necessarily indicate an advantage, as the visualization results suggest that it may lead to
uncontrollable semantic deviations. The high transfer attack success rate could be attributed
to inherent changes in global semantics. Additionally, its optimization for white-box attacks
is inadequate. For undefended white-box models, the success rate is lower than that of our
method and VENOM.

Conclusion : Our method shows a decrease in ASR in most cases when facing JPEG and DiffPure
defenses, but this effect is limited, and in the face of JPEG defense, our method is the only one able
to keep the attack success rate ASR consistently above 80% when the target model is the same as the
surrogate model (see Figure 24). When the DiffPure defense leads to a decrease in the attack success
rate of our method and an increase in the attack success rate of the SD-NAE method, we are still able
to ensure that at least one data point of our method outperforms the SD-NAE (e.g., the subplot in the
first column of the fifth row of Figure 25).

In summary, our method enhances the optimization exploration capability for adversarial examples
while maintaining In-Manifold Regularization(outperforms the comparison methods all cases (48/48)).
This ensures that our approach remains effectively aggressive against defense methods.

D.3 On the Role of Residual-driven Attacking Direction Stabilization in 2D and 3D
SemanticAE Applications

Boosting Multi-diffusion-step Regularized Adversarial Optimization Recall that, to solve
the problem of collaborating the adversarial optimization with the diffusion model for better
transfer attacks and robust attacks, we introduce the residual approximation in ResAdv-DDIM.

36



We further analyze it in the more refined evaluation tasks. The experiment is conducted with the
surrogate model of ViT-B/16 with 6 different target models on the abstracted label evasion task.
The parameters of the maximal approximate iteration K and the ts/T = 0.25, 0.5, 0.75 have been
evaluated. The results are shown in Figure 15. Since altering the parameter changes the behavior of
the semantic alignment, the semantic difference measurement is included, and the results are plotted
in a figure. K = 0 indicates the setting without the residual approximation.

The figure shows that:

• When ts/T = 0.25, both LPIPS and ASR are higher, and the introduction of the residual
approximation lets the balance point between LPIPS and ASR offset, or more biased towards
LPIPS optimization. This is due to (1) since the white box results, shown in the upper left
figure, indicate that the successful ASR has already been achieved, and there is no need to
improve the performance of adversarial optimization. Therefore, improvement is on LPIPS.
(2) Since the residual approximation is not designed for regularizing transfer attacks, the
transfer attack performance declines in ResNet and Inception models.

• When ts/T ∈ {0.5, 0.75}, the result is different. Specifically, (1) the white-box results
indicate that the adversarial optimization is non-optimal. (2) The residual approximation im-
proves the performance of the white-box attacks and significantly improves the performance
of transfer attacks. Improvements exist in both LPIPS and ASR.

• Simply increasing the step (the blue arrows) of undergoing diffusion steps of adversarial
optimization may not improve adversarial transferability. However, it may decrease adver-
sarial optimization performance under the same adaptive optimization mechanism, as the
diffusion process may purify the adversarial optimization.

• Increasing ts together with the residual approximation solves the collaboration problem
between adversarial optimization and diffusion purification, leading to highly transferable
SemanticAE.

Figure 15: Parameter analysis with surrogate model ViT-B/16. Red arrows denote the performance
before and after adding the residual approximation for g(x). In each setting of ts

T ≥ 0.5, applying
residual approximation achieves significant improvements (The upper left corner indicates a strictly
superior direction). This result is coherent with the design goal of ResAdv-DDIM.

Collaboration with EoT Different from 2D optimization, the global gradient of 3D models cannot
be obtained within a single iteration. Therefore, the EoT optimization is applied, accumulating
the gradients across different perspectives. This further challenges the adversarial optimization
capability. However, as shown in Table 8, with the residual approximation (K > 0), our method
can collaborate well with EoT with different numbers of EoT steps, resulting in different gradient
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optimization step sizes. The visualized comparison is shown in Figure 16 and the supplementary
videos in https://semanticAE.github.io. The attack performance on different views is significantly
higher than without residual approximation (K = 0), showing that the necessity of the residual
approximation under diffusion+EoT generation pipeline.

Table 8: Comparison between residual approximation and expectation over transformation (EoT).
The total iteration (EoT step * gradient descent step) is consistent. The gradient optimization stepsize
is larger if the EoT step is higher.

EoT step 5 3 1 1 1 1 1
Residual approximation step (K) 4 4 4 3 2 1 0

ASR 0.922 0.913 0.922 0.912 0.912 0.902 0.451

Figure 16: 3D Visual Results Ablation.

D.4 On the Potential Adversarial Transferability to Semantic Evaluator

We analyze the character between and find the clue of the reference-free semantic evaluation metric
being transferred in SemanticAE evaluation. Our experiment is based on hypothesis testing. Specifi-
cally, we evaluate the results from our method under the setting of Appendix D.1, which is 16 rounds
of generation for each of the original ImageNet label evasion task and the abstracted label evasion
task. Additionally, we evaluate the clip-score [82] metric with the settings:

Prompt =

{
ImageNetLabel Task = ImageNet

AbstractedLabel, ImageNetLabel Task = Abstracted
(36)

The backbone of the clip-score is ViT-B/32. Then we apply the linear regression on the clip-score,
as the clip Semantic metric, and the LPIPS score on the factor of whether the surrogate selects
ViT-B/16. The results is shown in Figure 17, Figure 18, and Figure 19. The following hypothesis is
rejected with high confidence (p < 0.02):

Under the same generation settings, the CLIP semantic evaluation results are independent of
the surrogate model selection.

Due to the high p-value associated with LPIPS, its correlation with surrogate model selection is
relatively low. Although there are differences in model configurations and training tasks, both clip-
score and the surrogate model adopt the ViT architecture. Therefore, we have reason to believe that
the transfer attack has affected the evaluation of semantic similarity metrics.

We believe that the potential adversarial transferability to the deep-learning-based semantic evaluation
model is difficult to tackle within the models, especially for the potential adversarial example that
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could perform weak-to-strong attacks. As discussed in Appendix B.3, our exemplar-based evaluation
task provides an alternative way to show the semantic alignment, avoids the requirement of non-
referencing semantic evaluation, and directly shows the adversarial capability of the generated
data.
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Figure 17: Results on the Original ImageNet
Label Evasion SemanticAEs
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Figure 18: Results on the Abstracted Label Eva-
sion SemanticAEs
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Figure 19: Combined distribution of the semantic metric on the ImageNet and abstracted label evasion
SemanticAEs. With high confidence (p < 0.02), the CLIP semantic metric is affected by the attack
transferability.

E Results Visualization

E.1 2D Visualized Results

To intuitively visualize the samples generated under the semantic constraints of original ImageNet
label and abstracted label, we select SemanticAEs xadv and corresponding nearby samples xexemplar

of seven original ImageNet labels (monarch, castle, goldfinch, aircraft carrier, vase, tiger, jellyfish) and
six abstracted labels (aircraft, bag, beetle, bird, boat, fish) for visualization, as shown in Figure 26 and
27. The surrogate model is DeCoWa + ResNet. For our attack method. We set different parameters
ϵ = {1.5, 2, 2.5, 3} and ϵ = {2, 2.5, 3, 4}, respectively, for 2D ImageNet-label evasion attacks and
2D abstracted-label evasion attacks, which determines the strength of the semantic constraint. We also
present the generation results of the baselines. For a single image I , we report confidence and mark
the classification label y with different colors employing ResNet50 and ViT-B/16 as target models. In
2D ImageNet-label evasion attacks, Green is for the same classification label y and ImageNet label
corresponding to the semantic constraint; otherwise, red. In 2D Abstracted-label evasion attacks,
Green indicates that the classification label y belongs to the abstracted label corresponding to the
semantic constraint. Therefore, a successful attack is defined as follows: for a pair of xadv and
xexemplar, xexemplar is classified correctly (green), while xadv is classified incorrectly (red).

Analyzing 2D Visualized Results Based on the observations of Figure 26 and 27, the following
conclusions can be derived:
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• For our attack method, as the parameter ϵ gradually increases, signifying a progressive weakening
of the semantic constraint strength, the number of successful attacks correspondingly increases.
However, this also results in unnaturalness of SemanticAEs. For instance, the xadv with the
original ImageNet label "castle" has a castle with a blurred top when ϵ = 3, and the xadv with the
abstracted label "ship" exhibits a blurry mast when ϵ = 4.

• SemanticAEs generated by SD-NAE disturb more global semantics, which leads to semantic
drift and dissimilarity between the xexemplar and xadv. It is consistent with the results shown in
Appendix D.1: SD-NAE has a lower MS-SSIM score and a higher LPIPS score, with the same
surrogate model, compared with other attack methods.

• As for MI-FGSM, noticeable noise can be observed in the background area of the SemanticAEs,
which are not natural. In the main paper, MI-FGSM corresponds to a lower CLIP-QAI score
related to noisiness.

• AdvDiff generates adversarial examples with artifacts at the edges in ImageNet-label evasion
attacks, such as the xadv of label "castle" and "aircraft carrier", which is a manifestation of low
image quality. In abstracted-label evasion attacks, SemanticAEs hardly attack target models
successfully.

• The adversarial examples of VENOM are natural. However, they struggle to effectively attack the
ViT-B/16 model.

In conclusion, our method generates local in-manifold patterns to achieve strong attacks.

E.2 3D Visualized Results

Image Visualization To qualitatively substantiate the efficacy of our proposed methodology, we
conducted a visual comparison of the generated video samples. Initially, ten unique labels were
randomly selected from the complete set of Abstracted Labels. Subsequently, for each of these
selected labels, the corresponding clean video sample and the adversarial video sample generated with
K = 4 were chosen. From each of these videos, five frames were extracted at equidistant intervals.
The visual results of these extracted frames are presented in Figure 28. A comparative analysis
of each pair of clean and adversarial examples reveals that the adversarial counterparts maintain
a high degree of visual similarity to the benign videos. Despite this perceptual resemblance, the
adversarial examples demonstrate a high probability of inducing misclassification by the ResNet-50
model, thereby underscoring the effectiveness of our approach in generating robust yet inconspicuous
adversarial attacks.

Furthermore, we performed a comparative analysis of adversarial examples generated under varying
K parameter settings to demonstrate the rationale behind our parameter selection. Specifically, we
selected the same video instance from the clean samples, the adversarial examples generated with
K = 0, and those generated with K = 4. A single frame was extracted from each of these three video
versions for visualization, as depicted in Figure 16. It is observable from the figure that when K = 0,
the classification outcome for the adversarial example paradoxically improves compared to the clean
sample, signifying a failure of the adversarial attack. Conversely, for K = 4, the adversarial example
exhibits visual characteristics closely resembling those of the K = 0 sample. However, its efficacy in
deceiving the classifier is significantly enhanced. This comparative visualization corroborates the
superiority of our chosen parameter configuration (K = 4) in achieving a strong attack effect while
preserving visual quality.

Video Visualization We performed a comparative analysis of adversarial examples generated
under varying K parameter settings to demonstrate the rationale behind our parameter selection.
Specifically, we selected three video instances, identified by their primary content as the forklift video,
the llama video, and the volcano video. For each of these videos, we considered the clean sample,
the adversarial example generated with K = 0 (without residual approximation), and that generated
with K = 4. The videos are shown in https://semanticAE.github.io.

It is observable from our quantitative analysis that the outcomes for K = 0 varied across the different
videos. For the forklift video, the classification accuracy of the adversarial example generated with
K = 0 paradoxically improved compared to its clean sample, signifying a failure of the adversarial
attack under this specific setting. In contrast, for both the llama and volcano videos, the adversarial
examples generated with K = 0 achieved lower classification accuracies than their respective clean
samples, indicating some attack effect. However, their accuracies were still notably higher than those

40

https://semanticAE.github.io


of the adversarial examples generated with K = 4. This demonstrates that for the llama and volcano
videos, while K = 0 initiated an attack, its deceiving capability was considerably weaker than that of
K = 4.

Conversely, for K = 4, the adversarial examples for all three videos (forklift, llama, and volcano)
exhibit visual characteristics closely resembling those of the K = 0 samples. However, their efficacy
in deceiving the classifier is significantly enhanced across all instances. This comparative visualization
and analysis corroborate the superiority of our chosen parameter configuration (K = 4) in achieving
a strong attack effect while preserving visual quality.

F Boarder Impacts

While our goal is to catalyze the development of the red-teaming framework and trustworthy AI, we
acknowledge that the proposed technology might be misused, including: (1) extending the proposed
transfer attack improvement methods to jailbreak multi-modal LLMs. (2) extending the proposed 3D
attack methods to generate physical adversarial examples to attack biometric authentication systems.
However, our framework is not directly designed for these scenarios and requires further integration.

To protect from potential attacks in applications, we suggest developing the following closed-loop
framework as a complement to traditional defense methods tested in Appendix D:

• Collect data generated by the proposed InSUR framework.
• Annotate the data with human feedback or rule-based models.
• Improve the alignment of the multi-modal models through fine-tuning on the dataset.

As a tool for data generation, we believe our framework is more beneficial for the model holder.
For responsibility, we will release the code of InSUR framework after the paper is published for
reference.
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Table 9: Abstracted Label Mapping from ImageNet Numerical IDs
Abstracted Label Original ImageNet Label IDs

dog 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,
193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,
263, 264, 265, 266, 267, 268

bird 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146

musical_instrument 401, 402, 420, 432, 486, 494, 513, 541, 546, 558, 566, 577, 579, 593,
594, 641, 642, 683, 684, 687, 699, 776, 822, 875, 881, 889

furnishing 423, 431, 453, 493, 495, 516, 520, 526, 532, 548, 553, 559, 564, 648,
703, 736, 741, 765, 794, 831, 846, 854, 857, 861, 894

motor_vehicle 407, 408, 436, 468, 511, 555, 569, 573, 575, 609, 627, 656, 661, 665,
675, 717, 734, 751, 803, 817, 864, 867

snake 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
fish 0, 1, 2, 3, 4, 5, 6, 389, 390, 391, 392, 393, 394, 395, 396, 397
building 410, 425, 449, 497, 498, 580, 598, 624, 663, 668, 698, 727, 762, 832
saurian 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
ball 429, 430, 522, 574, 722, 747, 768, 805, 852, 890
headdress 433, 439, 452, 515, 518, 560, 667, 793, 808
beetle 300, 301, 302, 303, 304, 305, 306, 307
timepiece 409, 530, 531, 604, 704, 826, 835, 892
shop 415, 424, 454, 467, 509, 788, 860, 865
dish 925, 926, 933, 934, 962, 963, 964, 965
cat 281, 282, 283, 284, 285, 286, 287
weapon 413, 456, 471, 657, 744, 763, 764
bottle 440, 720, 737, 898, 899, 901, 907
fungus 991, 992, 993, 994, 995, 996, 997
spider 72, 73, 74, 75, 76, 77
ship 403, 510, 628, 724, 833, 913
boat 472, 554, 576, 625, 814, 914
turtle 33, 34, 35, 36, 37
bag 414, 636, 728, 748, 797
housing 500, 660, 663, 698, 915
crab 118, 119, 120, 121
wolf 269, 270, 271, 272
fox 277, 278, 279, 280
bear 294, 295, 296, 297
aircraft 404, 405, 417, 895
armor 465, 490, 524, 787
wheel 479, 694, 723, 739
fence 489, 716, 825, 912
personal_computer 527, 590, 620, 681
roof 538, 853, 858, 884
overgarment 568, 617, 735, 869
skirt 601, 655, 689, 775
bread 930, 931, 932, 962
squash 939, 940, 941, 942
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Figure 20: ASR of Abstracted Label
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Figure 21: ASR of Original Imagenet label
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Figure 22: ACC of Abstracted Label
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Figure 23: ACC of Original Imagenet label

46



10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

AS
R 

on
 R

es
Ne

t5
0

=2 =2.5 =3 =4Surrogate: ResNet50
Ours
VENOM
MI-FGSM
SD-NAE
AdvDiff
Defence
Correspondence

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2
=2.5

=3

=4

Surrogate: ConvNext-T

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5
=3

=4

Surrogate: Vit-B/16

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0
=2

=2.5
=3

=4Surrogate: DeCoWa

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

AS
R 

on
 C

on
vN

ex
t-T

=2

=2.5
=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0
=2 =2.5 =3 =4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

AS
R 

on
 V

it-
B/

16

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0
=2

=2.5 =3 =4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

AS
R 

on
 In

ce
pt

io
nV

3

=2

=2.5 =3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

AS
R 

on
 R

es
Ne

t1
52

=2

=2.5
=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5
=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

AS
R 

on
 S

wi
n-

B

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2
=2.5

=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5
=3

=4

10 2 10 1

LPIPS (Lower is Better)

0.0

0.2

0.4

0.6

0.8

1.0

=2

=2.5

=3

=4

Figure 24: ASR on JPEG Defense
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Figure 25: ASR on DiffPure Defense
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Figure 26: Visualization of 2D ImageNet-label Evasion Attacks. Surrogate model is
ResNet50+DeCoWA.
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Figure 27: Visualization of 2D Abstracted-label Evasion Attacks. Surrogate model is
ResNet50+DeCoWA.
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Figure 28: 3D Visual Results. Surrogate Model is ResNet50.
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